Analysis of Total Harmonic Distortion for PV-Battery Hybrid System with Multilevel Inverter

Dr. L. Venkata Narasimha Rao¹, G.G. Raja Sekhar², T. Vijay Muni³

¹Professor, Department of EEE, K L University, Guntur, Andhra Pradesh, India,
²Associate Professor, Department of EEE, KKR & KSR Institute of Technology & Sciences, Guntur, Andhra Pradesh, India,
³Associate Professor, Department of EEE, NRI Institute of Technology, Vijayawada Rural, Andhr Pradesh, India,

Abstract: This paper presents the control of a multilevel inverter supplied by a Photovoltaic (PV) panel and a batteries bank. It is well known that the power quality of multilevel inverter signals depends on their number of levels. However, the question that arises is whether there is a limit beyond which it is not necessary to increase the number of level. This question is addressed in this paper seven -level converters are studied. The harmonics content of the output signals are analyzed. A simplified Pulse Width Modulation (SPWM) method for a multilevel inverter that supplied an induction motor is developed. The controller equations are such that the SPWM pulses are generated automatically for any number of levels. The effectiveness of the propose method is evaluated in simulation. Matlab/Simulink is used to implement the control algorithm and simulate the system.

Keywords: Induction motor, multilevel inverter, Multilevel SPWM, THD

INTRODUCTION

Nowadays, the industry requires power equipment increasingly high, in the megawatt range. The rapid evolutions of semiconductor devices manufacturing technologies and the designer’s orientation have enabled the development of new structures of converters (inverters) with a great performance compared to conventional structures. So, these new technologies of semiconductor are more suited to high power applications and they enable the design of multilevel inverters. The constraints due to commutation phenomena are also reduced and each component supports a much smaller fraction of the DC-bus voltage when the number of levels is higher. For this reason, the switches support more high reverse voltages in high-power applications and the converter output signals are with good spectral qualities.

Thus, the using of this type of inverter, associated with a judicious control of power components, allows deleting some harmonics [1]. Among the control algorithms proposed in the literature in this field [2-3-4], the SPWM, appears most promising. It offers great flexibility in optimizing the design and it is well suited for digital implementation. It also helps to maximize the available power. The main advantage of multilevel inverters is that the output voltage can be generated with a low harmonics. Thus it is admitted that the harmonics decrease proportionately to the inverter level. For these reasons, the multilevel inverters are preferred for high power applications [5-6]. However, there is no shortage of disadvantages. Their control is much more complex and the techniques are still not widely used in industry [7-8].

In this paper, modelling and simulation of a multilevel inverter using Neutral-Point-Clamped (NPC) inverters have been performed with motor load using Simulink/ MATLAB program. In the first section multilevel inverter control strategies are presented before to detail a study of seven-level inverter in the second section. Total Harmonic Distortion (THD) is discussed in the third section. The aim is to highlight the limit at which the multilevel inverters are no longer effective in reducing output voltage harmonics.

POWER QUALITY ISSUES

A. Voltage Variation

The voltage variation issue results from the wind velocity and generator torque. The voltage variation is directly related to real and reactive power variations. The voltage variation is commonly classified as under:
• Voltage Sag/Voltage Dips.
 • Voltage Swells.
 • Short Interruptions.
 • Long duration voltage variation.
The voltage flicker issue describes dynamic variations in the network caused by wind turbine or by varying loads. Thus the power fluctuation from wind turbine occurs during continuous operation. The amplitude of voltage fluctuation depends on grid strength, network impedance, and phase-angle and power factor of the wind turbines. It is defined as a fluctuation of voltage in a frequency 10–35 Hz. The IEC 61400-4-15 specifies a flicker meter that can be used to measure flicker directly.

B. Harmonics

The harmonic results due to the operation of power electronic converters. The harmonic voltage and current should be limited to the acceptable level at the point of wind turbine connection to the network. To ensure the harmonic voltage within limit, each source of harmonic current can allow only a limited contribution, as per the IEC-61400-36 guideline. The rapid switching gives a large reduction in lower order harmonic current compared to the line commutated converter, but the output current will have high frequency current and can be easily filter-out.

C. Consequences of the Issues

The voltage variation, flicker, harmonics causes the malfunction of equipments namely microprocessor based control system, programmable logic controller; adjustable speed drives, flickering of light and screen. It may leads to tripping of contractors, tripping of protection devices, stoppage of sensitive equipments like personal computer, programmable logic control system and may stop the process and even can damage of sensitive equipments. Thus it degrades the power quality in the grid.

PROPOSED MODEL

Photovoltaic (PV) systems are stand-alone power generators that have good environmental footprints. The modelling and the Maximum Power Point Tracking (MPPT) control strategy for a PV system are developed in [9]. In the latter, the control strategy that is presented is based only on the measurement of the PV current to track the maximum power. A batteries bank is added to the DC-bus to ensure the energetic autonomy of the system.

A Proportional-Integral (PI) controller is used to regulate the DC-bus voltage at a constant value. As a consequence the batteries compensate for the difference between the power supplied by the PV system and the power needed by the induction motor. The batteries are charged when the PV power exceeds the motor demand [10].

![Fig 1: Induction motor driven by PV-batteries standalone system using a controlled multilevel inverter](image)

MULTILEVEL INVERTER CONTROL STRATEGIES

A. The Three Level inverter Control Strategy

Fig. 2 shows a three-phase three-level inverter. It has three arms. Each arm has four switches. Every switch is connected in antiparallel with a diode. This paragraph describes the operation of one of the legs shown at Fig. 3. The voltage Vao between the phase “a” and the neutral point O is defined entirely by the switches position (0’open” or 1’closed’). Switch sets [S11, S13], and [S12, S14] have complementary positions. When [S11, S13], are open [S12, S14] are closed. The three-level NPC inverter is mostly used [10] for medium-voltage high-power applications.

In this converter, the number of commutation sequences (Seq) is equal to

\[2^4 = 16 \]

where 4 stands for the number of switches per arm and 2 is the number of state per switch (0, 1). Vdc is the DC-bus voltage. Only three commutation sequences are possible. They are represented at Table 1. Fig. 3 shows the configurations of the inverter’s arm which correspond to the three possible commutation sequences:

- Sequence 1: S11, S12 conduct and S13, S14 open (Fig. 3.a). \(Vao = +Vdc/2 \).
- Sequence 2: S12, S13 conduct and S11, S14 open (Fig. 3.b). \(Vao = 0 \).
Sequence 3: S13, S14 conduct and S11, S12 open (Fig. 3.c). \(V_{ao} = -\frac{V_{dc}}{2} \).

Sequences 1, 2 and 3 are applied in this order periodically.

A pulse width modulation is used to control the switches. Consider Fig. 4 and Fig. 5, the reference voltage \(V_{ra} \) is compared to the positive and negative sawtooth carrier \(V_{cx} \) and \(V_{cy} \) respectively. The comparator output is sent to the switches (Insulated Gate Bipolar Transistor or IGBT) to generate the machine phase voltage.

The inverter output voltages are written as follow (1):

$$
\text{TABLE 1}

\begin{array}{|c|c|c|}
\hline
S & [S11, S12, S13, S14] & V_{ao} \\
\hline
1 & [1 1 0 0] & V_{ao} \\
2 & [0 1 1 0] & 0 \\
3 & [0 0 1 1] & V_{ao} \\
\hline
\end{array}
$$
Modulation index (m_a) is defined by (2):

$$m_a = \frac{A_r}{(n-1)A_c} \quad (2)$$

where A_r and A_c are the peak to peak value of V_{ao} and V_c respectively.

B. The Higher Level Control Strategy

The previous study for the three-level voltage inverter is now extended to higher level inverters. For an n-level inverter, it is possible to determine the number of components that are needed per arm (number of switches, diodes, carrier, etc).

Numbers of inverter components calculation:

Define Seq as the number of commutation sequence possibilities. S is the number of secondary voltage sources. K stands for the number of switches per phase. D is the number of diodes loop including the diode switches per phase. C represents the magnitude of the voltage across each capacitor and P is the number of carriers. The following equations provide how these quantities are calculated and table 2 shows the values for several multilevel inverters.

$$S_{eq} = 2^{(n+1)}$$
$$S = P = n-1$$
$$K = 2(n-1)$$
$$D = 4n - 6$$
$$C = \frac{V_{dc}}{n-1} \quad (3)$$

<table>
<thead>
<tr>
<th>N</th>
<th>Seq</th>
<th>$S=P$</th>
<th>K</th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>$V_{dc}/2$</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>$V_{dc}/4$</td>
</tr>
<tr>
<td>7</td>
<td>256</td>
<td>6</td>
<td>12</td>
<td>22</td>
<td>$V_{dc}/6$</td>
</tr>
</tbody>
</table>

Fig. 5: Principle SPWM multilevel inverter control
Calculation of carrier:

A bipolar sawtooth carrier is illustrated at Figure 6. The voltages V_{cx} and V_{cy} have the expression given by equation (4):

\[
\begin{align*}
V_{cx} &= \sum_{i=1}^{n} V_{ci-1} + 1 \\
V_{cy} &= \sum_{i=2}^{n} V_{ci-1} - 1 \\
\end{align*}
\]
(4)

Calculation of reference voltages:

The balanced three-phase reference voltage is given by (5):

\[
\begin{align*}
V_{ra}(t) &= A_{r} \sin(2\pi f_{1} t) \\
V_{rb}(t) &= A_{r} \sin \left(2\pi f_{1} t - \frac{2\pi}{3}\right) \\
V_{rc}(t) &= A_{r} \sin \left(2\pi f_{1} t - \frac{4\pi}{3}\right) \\
\end{align*}
\]
(5)

Calculation of the comparator:

The comparator uses the reference and carrier signals to generate a binary signal according to the following equation:

\[
\begin{align*}
\text{If } V_{c} \geq V_{cx} &\Rightarrow T_{xm} = 1 \\
\text{or} & \text{ and} \\
\text{If } V_{c} < V_{cx} &\Rightarrow T_{xm} = 0 \\
\text{or} & \text{ and} \\
\text{If } V_{c} \leq V_{cy} &\Rightarrow T_{ym} = 1 \\
\text{or} & \text{ and} \\
\text{If } V_{c} > V_{cy} &\Rightarrow T_{ym} = 0 \\
\end{align*}
\]
(6)

Calculation of the adder:

The parameter K_{T} is the difference between T_{xm} and T_{ym}. It is therefore calculated as follows.

\[
T_{k} = T_{xm} - T_{ym}
\]
(7)

Calculation of inverter control vectors:

The generation of the pulse vector that control the inverter is very important. The pulse vector can be generated by applying the X7 vector for each MT according equation (8). The inverter output voltage V_{k} is given by equation (9).

\[
\begin{align*}
\text{If } T_{k} = \frac{n-1}{2-i} &\Rightarrow \\
&\begin{cases}
G_{1} = [0...01...1] \\
G_{2} = [1...00...1] \\
G_{3} = [1...00...1] \\
\vdots \\
G_{n} = [1...10...0] \\
\end{cases} \\
V_{k} = \frac{h-l}{m-1} V_{dc}
\end{align*}
\]
(8)

(9)
SIMULATION RESULTS

Fig 7: Simulink Circuit of the proposed System

Fig 8: Simulink Diagram of PV Array

Fig 9: Simulink Diagram of Fuel Cell

I. SIMULATION RESULTS

Fig 10: Input Voltage
TOTAL HARMONIC DISTORTION ANALYSIS OF MULTILEVEL INVERTER

The main criterion for assessing the quality of the voltage delivered by an inverter is the Total Harmonic Distortion (THD). This section will be devoted to analysing the inverter's performance according to their number level. Level three, seven inverters will be considered. The goal is to see if the low order harmonics amplitude will decrease when the number of level increases. The inverter is usually followed by a low pass filter since higher frequency harmonics are easy to filter. This means that the performance of multilevel inverters can be improved by cancelling or reducing lower order harmonics. Lower order harmonics generate the most important currents when an inductive load is used.

The THD is a ratio between the Root Mean Square (RMS) of the harmonics and the fundamental signal. For an inverter that has a fundamental output voltage V_1 and harmonics V_2, V_3, ..., we define the THD as follows:

$$THD = \sqrt{\frac{\sum_{k=2}^{N} V_k^2}{V_1}}$$

Fig 11: Multilevel output Voltage without filter

Fig 12: Multilevel output voltage with filter

Fig 13: THD of the Multilevel Inverter Voltage (0.55)
CONCLUSION

In this paper, a general multilevel SPWM control algorithm for n-level inverter has been modelled and simulated using Matlab®/Simulink. This algorithm can generate automatically SPWM pulses for any level of inverter by changing only a parameter n which is the number of inverter level. Simulation of 3, 9, and fifteen level inverter connected to induction motor has been performed and the generated signals THD is analysed. The system is supplied by a PV panel and batteries bank. That gives energy autonomy to the system. Simulation results give a better quality of stator current in terms of low harmonics, thus reducing the adverse effects on the machine life and eventually the electrical network which supplies it. Base to THD analyse for three different index of modulation, we have also highlighted that at fifteen-level, the harmonics are very low. These latter can be easily eliminated with a simple low-pass filter. So it is not necessary to continue increasing the inverter level.

REFERENCES

Dr. L. Venkata Narasimha Rao received B.Tech from S.V University in 1986 and received M.Tech degree in power systems in High Voltage Engineering from JNTUK in 2002. His research areas includes power systems, power electronics and drives, power system control and latest trends in power systems optimization. Presently he is working as a professor in EEE dept. KL University, Vaddeswaram, Guntur, A.P, India.

Mr. Raja Sekhar G.G. received B.Tech in Electrical & Electronics Engineering from Karnataka University and received Master’s Degree with specialization High Voltage Engineering from JNT University, Kakinada. He is pursuing his Ph.D in Acharya Nagarjuna University, Guntur. He has 13 years experience in various positions. Presently he is working as Associate Professor in EEE Department at KKR & KSR Institute of Technology & Sciences, Guntur. His research areas include Power Systems, High Voltage Engineering, and HVDC Transmission.

Mr. T. Vijay Muni received the Bachelors degree in Electrical and Electronics Engineering from Mother Teresa Institute of Science & Technology, Sathupally, India in 2007 and Masters Degree in Power and Industrial Drives from Nimra College of Engineering & Technology, Vijayawada, India in 2010. He is a Member of International Association of Engineers (MIAENG), International Association of Computer Science and Information Technology (MIACSIT). He is also Member of Society of Electrical Engineering. He is currently working as an Associate Professor in NRI Institute of Technology, Agiripalli, India. His research interests include FACTS, Power Electronics and Power System Analysis.